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Resonant harmonic oscillators and eigenvalue multiplicity 

S Grali5 and F Unguendolit 
Dipartimento di Matematica. Universith di Bologna, Italy 

Received 25 January 1994 

Abstract. Explicit formulae are worked out for the eigenvalue multiplicity of a system of 
n independent quantum harmonic oscillators in the general case of I < s < n - I resonance 
relations among lhe frequencies wt. , . . ,U,. As a particular case we prove that, even though the 
quantum numbers are always less than the degrees of freedom the eigenvalues m. in general, 
intrinsically degenerate only in the completely resonant case s = n - I. 

1. Introduction 

Consider a system of n independent quantum oscillators with frequencies 01, . . . ,ma. 
Setting A = 1, the eigenvalues are 

(1.1) A,, ,.... pm = OI(PI + z) + .. . + w,(p, + 4) 
It is well known (see e.g. [Bo section 2.151) that if there are resonance relations, i.e. 
rational relations among the frequencies, the quantum conditions (equivalently, the quantum 
numbers) are less than the number of degrees of freedom and hence the eigenvalues are 
expected to be intrinsically degenerate; namely with multiplicity greater than one except for 
the gound state. In the simplest (called completely) resonant case, which takm place when 
all frequencies are equal, w~ =. . . = w, = w, we have A,,,,..,,, = ( N  + in)., where N = 
P I  +. . . + p n ,  and the multiplicity is (see e.g. me])  M ( N ,  n) = ( N  + n - l ) ! / N ! ( n  - I)!; 
namely, M ( N ,  n )  is precisely the number of eigenvalues A,,,,.,,pn such that, for any N E N, 

Despite its spontaneous nahlre, however, there is to our knowledge no general reply 
to the following natural and apparently simple question: what is the multiplicity of the 
eigenvalues in the most general resonant case, i.e. of the occurrence of s : 1 < s < n - 1 
resonance relations among the frequencies; namely, when there exist integer numbers 
U" 'I ' . i = 1, . . . , s; j = 1, . . . , n with uij # 0 for at least two pairs of indices such that 

1 p~ = 0,1,. . . k = 1,.  . . , n .  

~ p , , . . . , p n  = ( N  + fn)w. 

1tJ11w1 +...+ UI,W, = 0 
tJ*IO] f .  ..+ u*,w, = 0 

U,,Ol +. . .+ U,?#, = 0. 
: +...+ : 1 

There are, moreover, at least two recent developments which require this multiplicity 
computation as a preliminary step: the extension to the resonant case of the statistics 
of eigenvalues (1.1) as a function of the arithmetic properties of the frequencies determined 
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by Bleher [Bll, BIZ], and the extension to the intrinsically resonant case of the exact 
quantization of canonical perturbation theory [Gr, GP. DEGH]. 

The purpose of this paper is therefore to work out an expression for the above 
multiplicity denoted by M j ( v i j ,  p )  : p = (PI,. . . , p n ) ,  vi, = (v~I,. . . , vi,) : i = 1,. . . , s. 
The result is admittedly rather involved in the most general case, but explicit and simple 
in the two possibly most important particular cases, namely s = n - 1 and s = 1, 
the maximum and minimum number of resonance relations allowed, respectively. The 
reason preventing the existence of such a result in the literature could indeed be that the 
computation of the multiplicity, trivial for n = 2 or for n = 3,s = 2 (for example, 
Mi(w11, W I Z ,  p )  = [ ( p l / w l I )  + (pz/ulz)l where [XI denotes the integer part of x )  becomes 
rapidly very cumbersome when n and s increase. 

This computation ofthe multiplicity is in fact related to a well known problem in number 
theory (a slight variant of it is known as the postage-stamp problem, see e.g. [RS, Sel, Se?,]); 
namely, the counting of the non-negative solutions of a h e a r  diophantine system (for this 
general topic see e.g. [Ca]). Hence this is the way in which the solution will be obtained, and 
this counting procedure highlights an important difference from the completely resonant (i.e. 
equal frequencies) case: i f s  < n - 1, the frequencies can always be selected in such a way 
as to generate sequences of eigenvalues of constant multiplicity (in particular, I) diverging 
to infinity. In other words, despite the fact that for a system of n independent oscillators 
the quantum conditions are less than the number of degrees of freedom no matter how the 
frequencies are chosen provided they admit at least one resonance relation, i f s  -z n - 1 the 
eigenvalues are actually inhinsically degenerate only for special values of the frequencies: 
otherwise, there can be simple eigenvalues (the degeneracy of the spectrum being therefore 
accidental) and the multiplicity of any eigenvalue tends to infinity as the 'quantum numbers' 
increase to infinity if and only if the rs relations are exactly n - 1. 

To formulate our results let us first specify some notational conventions. We consider 
from now n independent quantum harmonic oscillators with the zero-point energy subtracted, 
i.e. the operators in Lz(Wn) defined by the maximal action of the following differential 
expression: 

S Gran and F Unguendoli 

H = -LA 2 + 4 ( w : q : + . . . + ~ ~ q ~ )  - $(mi + .. . +on) 

so that the eigenvalues (1.1) become 

h, ,,..,, ,," = w l p l +  ... + o , p ,  = (w, p )  pk = 0.1, . . . k = 1, . . . , n (1.3) 

with p = (PI, .  . . , pn),  o = (01,. . . , on). We repeat that the frequencies w1, . . . , on 
admit 1 6 s < n resonance relations if there exists an s x n matrix A of rank s with integer 
elements, which without loss of generality can always be assumed in row-reduced form, 
such that 

Ao = 0. (1.4) 

Explicitly, setting 
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we can define exactly n - s 'principal quantum numbers' N,'S' in the following way: 

In this way one can write 

and hence we can conclude that the multiplicity of the eigenvalue ).p,,.,,,pn is given, for any 
$xed integer value of N:' : i = 1 ~ . . . , n -s, by the number of non-negative integer sotutions 
PI, ..., P .  0ffl.S). 

Concerning this statement, we remark on the following. 

this case we recover the usual notion of principal quantum number, since (1.8) yields 
(i) Formula (1.8) does not define the quantum numbers uniquely, except fo r s  = n - 1. In 

4-1 

N = P I U +  C Q l j P j + I  (1.10) 
j=1 

where, as we shall see, both a and qlj :  j = 1,. . . , n - 1 are positive. 
Actually in the simplest possible case, namely s = n - 1, w1 = . . . = on which yields 
a = 1, qij q = 1, this becomes N = p1 + p2 + . . . + p,,, the principal quantum 
number of the n-dimensional, equal-frequencies oscillator. 

(ii) In the general case of arbitrary s, however, then -s 'principal quantum numbers' (1.8) 
need not be positive definite. However, the solutions p i ,  . . . , pn of (1.8) must always 
be non-negative and this constraint allows us to estimate the multiplicity, making use 
of the results of [BT]. 

(iii) The form of (1.9) allows us to make more precise the above remarks on intrinsic 
degeneracy and on constant multiplicity. The quantum numbers are less than the degrees 
of freedom since s 2 1, and, moreover, we expect the multiplicity to always tend to 
infinity when at least xLr N(') + ca. We will see below, on the contrary, that if 
s < n - 2 there exist (always for s = 1, and for suitable choice of the frequencies 
for 1 < s < n - 1) sequences of eigenvalues of constant multiplicity (in particular, 1) 
tending to infinity. Two relevant examples are explicitly worked out in the remark after 
proposition 2.2. Therefore for a general choice of the resonant frequencies the spectrum 
is actually intrinsically degenerate, with multiplicity tending to infinity as the quantum 
numbers diverge, if and only i f s  = n - 1, namely in the maximally resonant case. 
Moreover, if there is only one resonance relation the spectrum is always accidentally 
degenerate. 
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(iv) There is no loss of generality in assuming that the s x (n-s) matrix formed by the first 
n -s columns of (1.5) does not admit any block reduction. Indeed the block reducibility 
corresponds to a set of independent resonance relations among independent degrees of 
freedom. The total multiplicty would therefore be the product of the multiplicities 
generated by any single resonance relation. 

S Grafi and F Unguendoli 

2. Statement of the results 

We can now begin to state the results. As already mentioned, for the sake of simplicity 
we prefer to describe separately the two particular cases, namely s = n - 1 and s = 1, the 
maximum and minimum number of resonance relations allowed, respectively. Fors = n - 1 
we have just the quantum number N given by (1.10). Denoting once more M i ( p 1 , .  . . , p,J 
the multiplicity in the case of n degrees of freedom and s resonance relations, the result is 
given by the following. 

Proposition 2.1. Lets = n - l , a n d ~ , q ~ , ~ ,  N bedefinedasin(1.7)and(l.lO),respectiveIy. 
Then the multiplicity M;-'(u, 41.1.. . . ,41..-1; N )  of the eigenvalue A,, ,..... = N ~ I / O L  is 
given by 

where [X I  denotes the integer part of x ,  Kj = [ N / q l , j - l ] ,  D2 = gcd(ql1,cr) and 

for some B E E ,  0 < B < Dz. Here~and in what follows the symbol DzIN indicates that 
DZ divides N .  

Remarks 

(i) A constructive formula for computing the integer B in (2.2) will be given below in the 
proof of lemma 3.1. 

(ii) Consider once more the simplest case w1 = 02. Then we have OL = 91.1 = 1, N = 
P I  + p z ,  Dz = 1, B = 1 and hence mi = N + 1. For n degrees of freedom and 
frequencies 0 1  = . . . = o,, the expression (2.1) gives the well known result 

( N + n - I ) !  
M;-'(l. . . . , 1; N )  = 

N ! ( n  - l)! ' 

In fact one has (by induction), 
N N N 

M;-'(l, . . . , 1; N )  = . Mi (1,l; N - c k j )  
n kI=O k , A  j=3 - 

( N  +n  - 2 - k3)! ( N  + n  - l)! N 
- - 

= ( N  - k3)!(n - 2)! N ! ( n  - I)! ' kI=O 
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Let us now state the result for the single resonance case, i.e. s = 1, where there are n - 1 
quantum numbers N I ,  . . . , 
Denote as above 0, = gcd(e; 411,. . . , ~,,-I.I). 
Let 0 < y! c e : k = 1 ,  . . . , Dn be all solutions of the linear congruence system 

~ I . I X ~  E NI 
(mod e) 

qn-l,lxn E Nn-I 
(2.4) 

and yf the correspondent solutions of linear system 

Proposition 2.2. The multiplicity M : ( e , q l , ~ ,  ..., q.-1,1; N I ,  ..., N A )  has the following 
expression: 

D" 
I M,(e, ql.1. . . . ,%-!,I; N I ,  . . . , K-1) = c m a x ( 0 ,  [ L k  - Mk1 + 1 )  (2.6) 

k=l 

where 

(2.7) 

Here 0 Q r 6 n - 2 is the unique non-negative integer such that 41.1, . . . , qr.l < 0 
qr+l.l, ... ,q.-1,1 z 0, and, Vi = r +  1 ,... , n  - 1 

-1 .  
4i.i 

Remarks 

(i) The existence of r : 0 < r Q n - 2 such that q1,1, . . . , qr, I c 0;  qr+l.l, . . . , q"-1,1 > 0 
is easily proved. Let us first recall that if there is just one resonance relation we 
have by definition -qj = qj, l ,  j = 1, . . . , n - 1; VI.,, = e and therefore we may 
write 0, = (I/e) Choosing e > 0 there is at least one index i for which 
qi.1 z 0. Otherwise 

Therefore in what follows we can assume the existence of 0 < r Q n - 2 such that 
v1.1,. .., U1.r 

(ii) The behaviour of Mi(.) is very irregular. As already remarked we can always find 
sequences of eigenvalues of constant multiplicity tending to infinity, in particular 
sequences of simple eigenvalues. The same thing happens for Mi(.) 1 c s n - 1, but 
only for suitable choice of frequencies. Let us present two simple examples of these 

0; Vl.,+l,. . .. u1.n-I z 0. 

situations. 
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Example I. Consider for s = 1 the following sequence of 'principal quantum numbers' 
N'*) = (Nf ' ) ;  , . . , Ni!l), where 

N y ' = h a  i = l ,  ..., n - 2  V h E N  

N Z ,  = O  Vh E N . '  

Let us compute ML (a, 41.1, . . . , qn-l.l ; N P ) ,  . . . , NAZI): this function is given (Vh E N) 
by the number of the non-negative integer solutions of the system 

(2.10) 

Since CY and qn-l,I are both positive, it is clear that V h  E N  this system only admits the 
solution 

y" = o *  
Y I  = h 

Y " 4  = h 
y"-] = 0. 

(2.11) 

Therefore M i @ ,  ql,l, . . . , qn-l.]; N f " ,  . . . , N E l )  = 1 Vh E N, while it is clear that 
N:') + +CO and kN;ki,.,,.,,;$, = (l/Cr) xyI; Ny)Oi + +03. 

Example 2. In the general case s > 1 consider all frequencies of, . . . , on for 
which the resonance relations give qn-s,j z 0 V j  = 1,. . . , s (see (1.7) for the 
definition of qi,j). Consider now the following sequence of  'principal quantum numbers' 
N @ )  = (NI'"', . . . , N;?,<) where 

N/') =ha i = 1, ..., n - s  - 1 V h  E N 
(2.12) 

N,Fx = 0 V h l h N .  

The multiplicity M;(.) of the correspondent 
non-negative integer solutions of the system 

ql,lX"-s+l +...+ q1.rx. + 
q"-.Y-l,l~"-.r+l +..'+ qn-.S-l,.Jn + 
qn-s.lXn-r+l +"'+ q"-s.Sx" + 

Vh E N this system admits only the solution 

eigenvalues is given by the number of 
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We are now ready to state the result valid for all the remaining cases, namely 
1 -= s < n - 2. Denoting 

H = (hn-r+2,. . . , h,) E E'-' 
(2.15) 

RF = Ni - h,-,y+jqi,j , i = 1, . . . , n - s 
j=2 

and introducing the matrices 

R1 = ( q;l ) e= ( q;l 4 ) (2.16) 

9n-s.1 qn--E.i R,-,? 
and the elementary divisors el;  cf,  e: of the matrices RI and q, respectively (recall that 
the first elementary divisor €1 of a matrix is the gcd among its elements and the second 
elementary divisor €2 is AZ/EI, where A2 denotes the gcd among the absolute values of all 
rank-2 minors), we have: 

Proposition 2.3. The multiplicity 

M;(a, qi,jli=I ,.... n - r : j = ~  ....,, r;  N I ,  . . . , Nn-s) 
can he computed in the following way: 

where MA-,r+l is the multiplicity function of a system of n - s + 1 independent oscillators 
admitting one resonance relation computed in proposition 2.2, extended to zero whenever 
at least one of the following conditions: 

(i) 
(ii) e r  - 0  (moda) (2.18) 
(iii) R," 2 0 Vi such that qi.1 2 0 

is not fulfilled; K = ma,, lApl, where A,, : p = 1, . . . . (n + l)!/(n - s)!(s + l)! are the 
minors of order n - s of the (n - s) x (n + 1) matrix, 

gcd(e1. a) = gcd(6f. a) 

a 0 ... 0 41.1 ... q1.r N I  
92.r N Z  0 a 0 0 92.1 ... 

i 0 '.. i 
0 . . . 0 a qn-&l . . . qn-.T,.v Nn-s 

(2.19) 

i 4 
0 1 = l  wz=e  o 3 = 1 + e  

Example. Let us compute the multiplicity of the eigenvalues in two simple cases 

(i) Let n = 3 and consider the frequencies 

yielding the resonance relation w1 +w2 -w3 = 0. Let N I ,  N2 be the 'quantum numbers' 
defined in (1.8). It follows that: o( = 1 = 91.1 = qz.1, D3 = 1 and the solutions yi of 
systems (2.4). (2.5) are trivially 

y3 = O  YI = N I  yz=  N 2 .  

Therefore the multiplicity Mi(1, 1, 1; N I ,  N z )  is 
M~(1,1.1;N1,N~)=max(O,[L-M1+1) 
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where L = min(N1, NI) M = "(0, -1) = 0 

+ M~(l,l,l;N~,Nz)=(min(N~,N~))+l. 
(ii) Let n = 4 and consider the frequencies 

w l = l  q = e  o 3 = l + e  w + = l - e  

yielding the two resonance relations 

01 +oz - crr, = 0 
0 1  - w z - w 4 = O .  

The coefficients defined in (1.7) are 
[ 
CY=l q1.1=1 q1.2=1 q2.1=1 qz.z=-l. 

Let NI, NZ be the 'quantum numbers' defined in (1.8); let H = h4 E 2 and 

R r  = NI - h4 RF = N2 + hq. 

The matrix (2.19) is 

1 1 0 1  1 NI ( 0 1 1 -1 Nz 

and it follows that (we consider only the non-trivial cases Nf > 1, i = 1,2) 

K = N l + N z  

Therefore, by (2.18)(iii) and example (i) the multiplicity Mi(1, 1, 1, 1, -1; N I ,  Nz) is 

Mi(.) = c M:(l,l,l;Ni-h4,Nzfh4) 
O G h 4 ' 6  +NI 

= Mi(1, 1, 1; NI - h4, Nz + h4) 
06h.GNt 

3. Proof of the results 

The first step towards the proof of proposition 2.1 is obviously represented by the 
computation of multiplicity function-Mi(or, 41.1; N), i.e. the number of the non-negative 
integer solutions of the linear diophantine equation 

(3.1) CYXI + qi,ixz = N 

where CY EN, 41.1 E €3 but we have to take N E Z. 

Lemma 3.1. Let Dz = gcd(a, 41.1) and let (yf, yk) : h = 1,. . . ,D2 be the DZ distinct 
solutions of (3.1) such that ql.1yt N(modar). Then 

Moreover, for h = 1, . . . , Dz, the function [yfjql.~] assumes just two values: 

(3.3) 



Resonant harmonic oscillators and eigenvalue multiplicity 4289 

and [ D z [ & ] + B  if N 20  and DzIN 
M;(Iy,ql.l; N) = (3.4) 

0 otherwise 

where 0 < B < Dz. 

ProoJ Remark that, obviously, A!:(.) = 0 if N c 0 and/or Dz does not divide N .  
Otherwise, consider first the case DZ = 1, and let ( y l ,  yz) be the unique solution of (3.1) 
such that q1,lyz = N(mod a). Since the most general solution is given by 

( Y i ,  yz) + (-b,i, ka) k E Z (3.5) 
it follows that y~ is the largest value which XI may assume if xa is required to be non- 
negative. Moreover it is easily seen that 

N N 
- - 41.1 < YI < - 
Iy 01 

Hence by (3.5) all non-negative solutions of (3.1) have the form 

It follows immediately 

and, by (3.13, the validity of the estimates 

(3.7) 

If now Dz z 1, the same argument applies to any single one of the DZ distinct solutions 
(yf, y,”): h = 1,. . . , Dz of (3.1) such that ql,ly,” E N(mod U). This yields all non-negative 
solutions of (3.1) under the form 

b:, yl) + ( -k(h)q i , , ,  k(h)a) h = 1.. . . , D 2  0 < k(h) < . (3.10) 

Hence (3.9) holds for any h : 1 < h < Dz, which proves (3.3), and summing over h we get 
(3.4). This concludes the proof of lemma 3.1. 

Proof ofproposition 2.1. The multiplicity of the eigenvalue Apl,,.,,pn is the number of non- 
negative solutions of the linear diophantine equation 

1 

EqI,j.q+l + x l a  = N .  (3.1 I )  

For n = 2, s = 1, equation (3.11) reduces to (3.1) because the resonance relation can be 
written under the form wz = (q1.I/Iy)wl. Therefore we can take from now on n z 2. Given 
n - 3 non-negative integers k, : j = 3, . . . , n we have to find the number of solutions of 
the equations parametrized by k j :  

i=l 

n 

ax1 + q l , l x z =  N - c k j q l . j - l  k, E& j = 3  ,..., n. (3.12) 
j=3 
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It is indeed plain that the nple (yl, yz; k3, . . . , k,) is a non-negative solution of (3.1 1) if 
and only if ( y l ,  yz) is a non-negative solution of (3.12). By lemma 3.1 the number of 
non-negative solutions of (3.12) is 

S GraB and F Unguendoli 

Therefore one formally has 

(3.13) 

(3.14) 

However, by the former lemma the function Mi(.) vanishes for N - & k j q l , j - l  4 0. 
Hence, for any 3 < j < n, the upper limit of the sum over kj is [ N / q l . j - ~ ]  which proves 
the assertion. This concludes the proof of proposition 2.1. 

Let us turn now to the proof of proposition 2.2. Let us first recall that if there is just 
= ff and 

wl.jwj. Moreover the 'quantum numbers' defined in (1.8) 

(3.15) 

so that the multiplicity MA@, 41.1. . . . , qn-1.1: NI. . . . , Nn-1) is given by the number of 
non-negative integer solutions of the linear diophantine system 

one resonance relation we have by definition -uI.j = qj.1 j = I ,  . . . , n - 1; 
we may write on = ( l /a )  
read 

Ni = pior + q i . 1 ~ ~  i = 1,. . . , n - 1 

(3.16) 

Proofofproposition 2.2. Recall that, choosing (Y > 0, there is at least one index i for which 
qi.1 > 0. Otherwise 

n-I n-I 

j= l  j = l  

0 < 0" = 2, Uoj < 0. 
ff ff 

Therefore in what follows we can assume (see remark (i) after proposition 2.2) the existence 
of 0 < r 4 n - 2 such that ~ I . I . .  .., W I . ~  c 0; q r + l ,  ..., U I . ~ - ~  > 0. This implies, 
in particular, that u ~ , ~ - I  is always taken positive. The case u j , j  = 0 for some (i, j )  is 
disregarded because it reduces to the single independent equation ( Y X ~  = Nj and therefore 
does not affect the number of the solutions. The system (3.16) is equivalent to the following 
system of linear congruences: 

(3.17) 

which always admits at least the solution x, = p,,. Let DN = gcd(ql.1 . . . , qn-l.l. a). Then 
the system (3.17) admits exactly D, distinct solutions, denoted y," : h = 1, . . . , Dn (see 
e.g. [Ca, section XVII.3371). These yield Dn distinct solutions of the system (3.16). in turn 
denoted by ~~ 

(3.18) h h g h  = ( y , ,  .. ., y , )  h = 1, ..., Dn 
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whence the general solution of (3.16) under the form 

(3.19) ( Y I  I . .  . Yn-12 Y,") + ( - ~ I , I , .  . ., -kqn-i,1, ka) 
Now take 0, = 1, and therefore let y,, be the unique solution of (3.17), which is obviously 
such that 0 < y .  c 01. We now look for the conditions on k in (3.19) coming from the 
requirement of the non-negativity of the solutions. 
(i) yn + ka > 0 + k 3 0 (since y n  < a). 
(ii) yi - kq;, 1 2 0 for r f 1 < i < n - 1. Hence, since for these values of i we have qi, I > 0, 

the same argument of the proof of proposition 2.1 applies and we have k < L I ,  where 

k h h = 1 , .  . . , D,. k F Z. 

L I =  min ([$I) . 
r+1<'i<n-l 

(3.20) 

Remark also that [ y i / q ; , l ]  fulfills, by the same argument of proposition 2.1, the estimate 
(3.9). 

(iii) Consider now the equations for which qj.1 < 0, j = 1,. . . , r ,  namely -1gj.1 Ix,+axj = 

(Yj ,Yn)+ (1qj .1l-k01) .  (3.21) 
If Nj 3 0 then yj 3 0, which implies that the solution (3.21) is non-negative V k  > 0. If 
Nj < 0, one must have - Iq j , l  Ix, < Nj which in tum yields x,  > - N j / l g j , l [ .  Therefore, 
if the solution y, does not fulfill the lower bound y, 2 - N j / [ q j , , l ,  k has to be chosen 
in such a way thaf 

N j .  Then the solutions are 

N .  

1qj.1 I 
y n  + ka 2 

We must therefore have 

Therefore, on account of (i), we can conclude that k Mr, where 

(3.22) 

(3.23) 

(3.24) 

Putting together (ii) and (iii) it follows that in order to get non-negative solutions we 

L , < k 6 M 1 .  (3.25) 

If D, > 1 the same argument applies separately to any single one of the D. distinct 
solutions Cy:, , . . , y j )  : h = 1, . . . , D,,. The assertion is therefore proved upon summation 
over h = 1, . . . , D,. This concludes the proof of proposition 2.2. 

We now proceed to the proof of proposition 2.3. To obtain it, we make use of a relatively 
recent result in number theory which we state under the form of a lemma. 

knma 3.2. . Let A E M(m x n )  and B E M ( m  x 1) be matrices with integer coefficients, 
and let rank(A) = r .  If the equation A x  = 0 does not have non-hivial non-negative 
solutions, then any non-negative integer solution y = (y1, . . . , y , )  of the equation A x  = B 
fulfills the estimate 

Yi < M (3.26) 

where M is the largest among the absolute values of the rank@) minors of the matrix 
obtained augmenting A by E ,  namely completing A by the column matrix B .  

must require 
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Pmoj See [BT, theorem 41. 

S Gra8 and F Unguendoli 

As above, before starting the argument we recall that when there ares resonance relations 
(1 c s < n - 2) the 'principal quantum numbers' have the form 

N y )  = piu + ~ q j , j p n - , v + j  i = 1 , .  . . , n - s .  (3.27) 

The multiplicity ML(u, q; , j l i=~  ,..., n-r : j= i  ..... E; N I , .  . . , Nn-.r) of the eigenvalues is this time 
given by the number of non-negative solution of the linear diophantine system 

j=1  

q l , l X n - s t ~  +...~+ q~ ,rxo  +  XI = N I  
(3.28) I !  qn-r,lxn-s+~ +...+ qn-s..+n + = Nn-s. 

Proof of proposition 2.3. Following the same argument of the proof of proposition 2.1, 
consider the linear diophantine systems 

~ I . I X ~ - , ~ + I  + (YXI = RF 
(3.29) 

H 
qn-s . lXn-r+l  + axn-.T = R,, 

(3.30) 

Each system of the form (3.29) can be analysed in exactly the same way as the system 
(3.16). Recalling the definition of u and 91.1 we can indeed always choose > 0 
whence CY = ~ j . . - , ~ + j  > 0. Moreover, since vj,,,+j > 0, for each single resonance 
relation, i.e. V I  6 j 6 s, there must be i = i(j) : 1 6 i 6 n - s such that u j . i ( j )  > 0. This 
in turn implies that V l  < j < s 3i = i(j) such that qi,; > 0. In particular for j = 1 there 
is i = i (1 )  such that qi.1 > 0. Let us now write down explicitly the conditions under which 
the systems (3.29) admit solutions (see e.g. [Ca section XVII. 33461). Let el ,  E : ,  €7 be 
the elementary divisors of the matrices 

I :  
parametrized by the non-negative integers H = (h,,+z, . . . , h,) E EL?, where 

R? = Ni - hn-,y+jqi,j 
j = l  

i = 1, . . . , n - s. 

Then the systems (3.29) admits solutions if and only if 

gcd(a, el 1 = g c W ,  6;) I 6; = O  (modu). 

RY 2 0 Vi such that qi.1 2 0.  
The existence of non-negative solutions requires, moreover, 

(3.31) 

(3.32) 
Therefore VH E EL-' the number of non-negative solutions of (3.29) is given by 
Mn+.+,(a. qi.1.. . . , qn-.?+I; R f ,  . . . , R,!-_,) if (3.31) and (3.32) hold, and by 0 otherwise. 
Therefore, by exactly the same argument as in the proof of proposition 2.2 we can write 

L 

Mi(us qi,;l i=~ .._., n-.Y:;=l .._.,. I;  N I ,  . . . 9 Nn-s) 

(3.33) 1 = M~-s+ I ( ~ . ~ I , I  , . . . , q " - . ~ , i ; R F , . . . , R ~ - ~ )  
H=(ho-,+z ,.... h&Z: 
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where Mi-,y+,(.) is extended to 0 if (3.31). (3.32) do not hold. Now remark that the system 
(3.28) fulfills the conditions of lemma 3.2. This is because the number of the non-negative 
solutions of the associated homogeneous system is the multiplicity of the eigenvalue ho 
which is always simple. Therefore this last system cannot have non-negative solutions 
different from the trivial one. Therefore all non-negative solutions ( y ~ ,  . . . , yn) of (3.28) 
must be such that 

y j ( K  i = l ,  ..., n (3.34) 

i 0 . . . 0 a qn-&I . . . qn-s,.r Nn-,v 

where K is the maximum among the absolute values of the n - s-rank minors of the matrix 

M 0 ... 0 41.1 ... 
0 j a 0 '.. 0 0 i q2,L ... 8::: !) 

(3.35) 

We can therefore conclude that the multiple sum (3.33) is extended only to those indices 
H = (hn-r+2. . . . , h, )  such that 0 ( hj < K, j = n - s + 2,. . . , n, and this proves the 
assertion. 
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