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Resonant harmonic oscillators and eigenvalue multiplicity
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Dipartimento di Matermnatica, Universith di Bologna, Italy

Received 25 January 1994

Abstract. Explicit formulae are worked out for the eigenvalue multiplicity of a system of
n independent quantum harmonic oscillators in the general case of 1 £ 5 € n — 1 resonance
relations among the frequencies ¢y, ..., w,. As a particular case we prove that, even though the
quantum numbers are always less than the deprees of freedom, the eigenvalues are, in general,
intrinsically degenerate only in the completely resonant case s =n — L.

1. Introduction

Consider a system of r independent quantum oscillators with frequencies wy, ..., w,.
Setting % = 1, the eigenvalues are

Aprrorpn = @1(p1 + 34 -+ + @n(Dn + 3) m=0,1,... k=1,...,n. (1.1

It is well known (see e.g. [Bo section 2.15]) that if there are resonance relations, i.e.,
rational relations among the frequencies, the quantum conditions (equivalently, the quantum
numbers) are less than the number of degrees of freedom and hence the eigenvalues are
expected 10 be intrinsically degenerate; namely with multiplicity greater than one except for
the ground state. In the simplest (called completely) resonant case, which takes place when
all frequencies are equal, w; = -+ =@, = w, we have Ay, p = (N %n)w, where N =
p1+- -+ pn, and the multiplicity is (see e.g. [Mel) M(¥N,n) = (N +n - DI/N!(n - 1)}
namely, M (N, n) is precisely the number of eigenvalues A, p, such that, for any ¥ € N,
Aprpn = (N + sn)w.

Despite its spontanecus nature, however, there is to our knowledge no general reply
to the following natural and apparently simple question: what is the multiplicity of the
eigenvaiues in the most general resonant case, i.e. of the occurrence of s : 1 s gn—1
resonance relations among the frequencies; namely, when there exist integer numbers

wiri=1...,85 )= I,....nwith v; 20 for at least two pairs of indices such that
viiy +...4+ vipw, = 0
Ve, ..o vgawy, = 0
. . . (1.2)
. +...- . :
Vet .. Vg, = 0.

There are, moreover, at least two recent developments which require this multiplicity
computation as a preliminary step: the extension to the resonant case of the statistics
of eigenvalues (1.1} as a function of the arithmetic properties of the frequencies determined
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by Bleher [BlI, BI2], and the extension to the intrinsically resonant case of the exact
quantization of canonical perturbation theory [Gr, GP. DEGH].

The purpose of this paper is therefore to work out an expression for the above
multiplicity denoted by Mi(vi;, p): p = (pr,....Pabs vy =i, ..., vm) ti=1,..., 8.
The result is admittedly rather involved in the most general case, but explicit and simple
in the two possibly most important particular cases, namely s = n — 1 and 5 = 1,
the maximum and minimum number of resonance relations allowed, respectively. The
reason preventing the existence of such a result in the literature could indeed be that the
computation of the multiplicity, trivial for n = 2 or for n = 3,5 = 2 (for example,
M}, viz, P) = [(p1/v11) + (p2/v12)] where [x] denotes the integer part of x) becomes
rapidly very cumbersome when n and s increase.

This computation of the multiplicity is in fact related to a well known problem in number
theory (a slight variant of it is known as the postage-stamp problem, see e.g. [RS, Sel, Se2]);
namely, the counting of the non-negative solutions of a linear diophantine system (for this
general topic see e.g. [Ca]). Hence this is the way in which the solution will be obtained, and
this counting procedure highlights an important difference from: the completely resonant (i.e.
equal frequencies) case: if s < n — 1, the frequencies can always be selected in such a way
as to generate sequences of eigenvalues of constant multiplicity (in particular, 1) diverging
to infinity. In other words, despite the fact that for a system of »# independent oscillators
the quantum conditions are less than the number of degrees of freedom no matter how the
frequencies are chosen provided they admit at least one resonance relation, if s < n— 1 the
eigenvalues are actually intrinsically degenerate only for special values of the frequencies:
otherwise, there can be simple eigenvalues (the degeneracy of the spectrum being therefore
accidental) and the multiplicity of any eigenvalue tends to infinity as the ‘quantum numbers’
increase to indinity if and only if the rg relations are exactly » — 1.

To formulate our results let us first specify some notational conventions. We consider
from now r independent quantum harmonic oscillators with the zero-point energy subtracted,
ie. the operators in L2(R") defined by the maximal action of the following differential
expression:

H = —3a (0] +ooo0lgd) — don .o )
so that the eigenvalues (1.1) become
Mppospn =01 D1+ Fnp, = {0, p) p=01L... k=1,...,n (1.3)
with p = (p1,.... Pn)y @ = (@1,...,w,). We repeat that the frequencies w),...,w,
admit 1 £ 5 £ n resonance relations if there exists an 5 x n matrix A of rank 5 with integer
elements, which without loss of generality can always be assumed in row-reduced form,
such that

Aw=0. (1.4)

Explicitly, setting

Vil vve Vig—s —Vin—gtl 0 0
Vap vve Vap—g 0 —Vip—st2  v.. 0

A= . ) ) i . (1.5)
. . . . 0 ., :

U,‘I] e m vx‘n.-...«; 0 0 Saa _v.\'.n
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equation (1.4) becomes

Vin-spl@n—s41 = Z_',:f V), jw;
; : (1.6)
Vs, nn = _l:;; Vg, j@0j .
Now setting
& 5
o= l_[ Vin—s+j gij = Vi l—[ Vi, nms -k an
=1 k#j=1
we can define exactly » — s ‘principal quantum numbers’ N[.{” in the following way:
¥
Ni(x)=Pia+ZQ'ian—s+j- i=1,...,n—5. (1.8)
f=1
In this way one can write
1 n=—y
D (19)

and hence we can conclude that the multiplicity of the eigenvalue i, .. p. is given, for any
fived integer value of Ni(") ti=1, ..., 03, by the number of non-regative inteper solutions
Ply-vws P Of (1.8).

Concerning this statement, we remark on the following,

(i} Formula (1.8) does not define the quantum numbers uniquely, except fors = n — 1. In
this case we recover the usual notion of principal quantum number, since (1.8) yields

5—1
N=pa+Y q1jP (1.10
j=1
where, as we shall see, both o and g1;: j=1,...,n— 1 are positive.
Actually in the simplest possible case, namely s = n — 1, @ = --- = @, which yields

a = 1,9y =¢q = 1, this becomes N = p; + p +--- + py, the principal quantum
number of the n-dimensional, equal-frequencies oscillator.

(ii) In the general case of arbitrary s, however, the n —s ‘principal quantum numbers’ (1.8)
need not be positive definite. However, the solutions py, ..., p, of (1.8) must always
be non-negative and this constraint allows us to estimate the multiplicity, making use
of the results of [BT).

(iii) The form of (1.9) allows us to make more precise the above remarks on intrinsic
degeneracy and on constant multiplicity. The quantum numbers are less than the degrees
of freedom since s 2> 1, and, morecver, we expect the multiplicity to always tend to
infinity when at least ¥ ;7 N® — co. We will see below, on the contrary, that if
5 § n—2 there exist (always for s = 1, and for suitable choice of the frequencies
for 1 < s < 1 — 1) sequences of eigenvalues of constant multiplicity (in particular, 1)
tending to infinity. Two relevant examples are explicitly worked out in the remark after
proposition 2.2. Therefore for a general choice of the resonant frequencies the spectrum
is actually intrinsically degenerate, with multiplicity tending to infinity as the quantum
numbers diverge, if and only if s = #n — 1, namely in the maximally resonant case.
Moreover, if there is only one resonance relation the spectrum is always accidentally
degenerate,
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(iv) There is no loss of generality in assuming that the § X (n—s) matrix formed by the first
n—s columns of (1.5) does not admit any block reduction. Indeed the block reducibility
corresponds to a set of independent resonance relations among independent degrees of
freedom. The total multiplicty would therefore be the product of the multiplicities
generated by any single resonance relation.

2. Statement of the results

We can now begin to state the results. As already mentioned, for the sake of simplicity
we prefer to describe separately the two particular cases, namely s =7 — 1 and s = 1, the
maximum and minimum number of resonance relations allowed, respectively. Fors =n—1
we have just the quantum number N given by (1.10). Denoting once more M;(p1,..., Pn)
the multiplicity in the case of n degrees of freedom and s resonance relations, the result is
given by the following.

Proposition 2.1. Lets =n—1, and &, g1 ;, N be defined as in (1.7) and (1. 10) respectively.

Then the multiplicity M,’;“(a, 41, --.»q1,a=1; N) of the eigenvalue A, = Nw, /e is

given by

M et gty Guamti N) = Z Zj (e i N — Zk,ql.m) @1
k=0  iy=0

where [x] denotes the integer part of x, K; = [N/q1,;-1], D2 = ged(q1, &) and

i Dz[ N]-l-B if N>20 and Ds|N
M;(ee, g1, N) = o,

0 otherwise

2.2)

for some B € Z, 0 € B £ Dj. Here and in what follows the symbol D;|N indicates that
Dy divides N. ’

Remarks

(i) A constructive formula for computing the integer B in (2.2) will be given below in the
proof of lemma 3.1.

(ii) Consider once more the simplest case & = w;. Then we have ¢ = g1 = 1, N =
p1+ p2, D2 = 1, B = 1 and hence m{ = N + 1. For n degrees of freedom and
frequencies w; = --- = w, the expression (2.1) gives the well known result

- (N+n—1)!
ML, ., L NY = S 2,
n ( L) Ni(n — 1! (2.3)
In fact one has (by induction),
M=y >b)
ML 5Ny =)y M (LGN =)k
! ; k=0 k=0 =3
ZM""Z voer TN — k)
k=0 "—-v---"

n~1

=i N+n-2-k)! _(N+n—1
(N—=k)!i(n=2)! Nln=-D! "~

ky=0
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Let us now state the result for the single resonance case, i.e. § = 1, where there are # — 1

quantum numbers Ny, ..., Ny_-
Denote as above D, = ged(; g11, - - - » Ga=1,1)-
LetO0< y* <a: k=1,..., D, be all solutions of the linear congruence system
gixa = N
I (mod ) (24)
Gn-11% = Nao
and yf‘ the correspondent solutions of linear system
X+ axy = N
: : : (2.5)
Gn-11%n + OXpo1 = Nyg.

Then we have the following.

Proposition 2.2. The multiplicity M (a,q1,15 .+, Gu1,1; N1» - .., Npy—p) has the following
expression:

Dy
M@, qrts s Guet 13 Nty ooy Nasy) = ) max(0, [Ly — Myl + 1) (2.6)
k=1
where
. ¥ _
Ly = -min =t k=1,...,D,
relgign—1| giq
. . 2.7
Mp, = max (0 (— (max( \ —’) - yﬁ))) .
o\ isr gi1
Here 0 £ r € n — 2 is the unique non-negative integer such that g1,1,...,¢,1 < O;

Gralls-ee:Gn—p,1 >0, and, Vi=r+1,...,0—1
k : N
[—y'-] = [f\ﬁ-] or [—] _1. 2.8)
qit git .1

(i) Theexistence of r : 0K rgn—2suchthatgyy,....4:1 <0igrt11,+ v s Gayn > 0
is easily proved. Let us first recall that if there is just one resonance relation we
have by definition —v; ; = ¢;1, f=1,...,n—1; v;, =  and therefore we may
write @, = (1/ct) Z}‘;} vy, jw;. Choosing o > 0 there is at least one index { for which
gi,1 > 0. Otherwise

O<w,,—nz—1 -—Z@—wj

=i

Remarks

Therefore in what follows we can assume the existence of 0 € r € # — 2 such that
Vidseora Ve <0 Vipgtyeeea V-1 > 0.

(ii) The behaviour of M!(-) is very irregular. As already remarked we can always find
sequences of eigenvalues of constant multiplicity tending to infinity, in particular
sequences of simple eigenvalues. The same thing happens for Mi() 1 <s <n—1, but
only for suitable choice of frequencies. Let us present two simple examples of these
situations.
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Example I, Consider for s = [ the following sequence of ‘principal quantum numbers’
N® = (NP, ... N®), where
NP=he  i=1,...,n-2 VheN

(2.9
N® =0 VYheN. )

Let us compute M} (e, g.1 - -+ GuL.1} N”‘) .. N(}’),) this function is given (Vk ¢ N)
by the number of the non-negative integer SOIlIthIlS of the system

q1,1%n -+ X = hea

) ’ ’ (2.10)
gn-2,1Xn +  QXpn = ho
Gn-11%n + xp = 0.

Since o and g,_,1 are both positive, it is clear that YA € N this system only admits the
solution

yw = 0 =
3| = hk
: : 2.11)
Yoz = h
Yn-1 = 0.
Therefore M} (e, qu1, ..., gue1.1; N, ..o, N¥ ) = 1 Vh € N, while it is clear that
NP = oo and dym e = (1 /a)z - NPw; — +c0.
Exampie 2. In the general case s > 1 consider all frequencies w,..., &, for
which the resonance relations give gp,—,; > 0 Vj = 1,...,s5 (see (1.7) for the

definition of g; ;). Consider now the following sequence of *principal quantum numbers’
N = (N® ., N®) where

N =ha i=1,...,n—s—1 VheN 212
N =0 VhieN. '

The multiplicity M:(.) of the correspondent eigenvalues is given by the number of
non-negative integer solutions of the system

G1,1%n—s+1 R R g1,sXn + ax; = ho
: : : : : (2.13)
Gnes=1 1 Xp=se] Tt GpegeipXn T+ OXp—poy = he
Grn—s, 1 Xn—s+1 +eorrt GueseXn 4+ Oxp.y; = 0,
Yh € N this system admits only the selution
Vnms = =Ya=0 = y=:=ypy-1=k. (2.14)

Therefore

M gijli=1,...on—sij=1...,sN" ., N®)=1 VheN

.....
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We are now ready to state the result valid for all the remaining cases, namely
1 < s < n—2. Denoting

H = (hﬁ—.i‘-l-?.s RN hl‘!) € Z.?—f

5
R =N~ Zhn—s+ﬂ1i,j i=1,...,n—s 2.15)
f=2
and introducing the matrices
g1 g1 R
Ry = : RE = : : (2.16)
gr—y,1 Gn—s,1 Rf_,‘- ;

and the elementary divisors e; €, eff of the matrices R and RY, respectively (recall that
the first elementary divisor ¢; of a matrix is the gcd among its elements and the second
elementary divisor &2 is Az/e;, where A; denotes the ged among the absolute values of all
rank-2 minors), we have:

Proposition 2.3. The multiplicity
My gijlizt,.n—s =18 Nis oo oy Npy)
can be computed in the following way:

MiOy = Y Ml @ gun e, guesti RE, o RE) (2.17)

HeZs
O< <K

where M!_ +1 is the multiplicity function of a system of n — s + 1 independent oscillators
admitting one resonance relation computed in proposition 2.2, extended to zero whenever
at least one of the following conditions:

() gedler @) = ged(ef’ . o)
(i) ef=0 (mod &) (2.18)
Gi) RT>0 ¥ suwchthatg, >0 '
is not fulfilled; K = max,|A,|, where Ay:p=1,....(n+ D!/(n —s)(s + I)! are the
minors of order n — s of the (r — 5) x (n + 1) matrix,

@ 0 ... 0 q1 --- g M
0 «@ 0 0 q2.1 v g5 No
. . 2 . {2.19)
: 0 o : : : :
0 ... 0 @ Guos1 -+ Quss Np—s

Example. Let us compute the multiplicity of the eigenvalues in two simple cases.
(i) Let n = 3 and consider the frequencies
an =1 wy=¢ wy=1+e

yielding the resonance relation o) --w2 —w3 = 0. Let Nj, N, be the ‘quantum numbers’
defined in (1.8). It follows that: &« =1 = g11 = ga.1, D3 = 1 and the solutions y; of
systems (2.4), (2.5) are trivially

y3=0 y =N y2=Nj.
Therefore the multiplicity Mi(1, 1, 1; N, No) is
M3(1, 1, 1; Ny, N) = max(0, [L — M]+ 1)



4288 S Graffi and F Unguendoli

where L = min(N, No) M =max(0,—-1) =0
= ML 1,1 N, N2) = (min(Ny, No)) + 1.
{ii) Let n = 4 and consider the frequencies
w =1 Wy =g wy=14e wy=1—e¢
yielding the two resonance relations
{wn +w—wy=0
Wy —ws— s =0,
The coefficients defined in (1.7) are
=1 gri=1 q2=1 g1 =1 gaa=—1.
Let Ny, N; be the ‘quantum numbers’ defined in (1.8); let H = k4 € Z and
RE =Ny —ny RI=Ny+ha.
The matrix (2.19) is
( 101 I M )
011 -1 A
and it follows that (we consider only the non-trivial cases N; > 1, i = 1,2)
K=N+N,s.
Therefore, by (2.18)(iii) and example (i} the multiplicity M,%(l, 1,L1,~1; My, Na) is
Mi)= > MIL1,1; N —he Na+ha)

Oghage NI+ V2

= > MI1, 11Ny — ke Na+ha)
0gha SN

= Y (min(N) —hs, Ny +ha) +1).
0ghigN

3. Proof of the results

The first step towards the proof of proposition 2.1 is obviously represented by the
computation of multiplicity function'Mé (o, 1,13 N), Le. the number of the non-negative
integer solutions of the linear diophantine equation

ax)+qixe =N (3.1)
where & € N, g1 € N but we have to take N € Z.

Lemma 3.1. Let Dy = ged{e, 1,1) and let (38, y5) 1 £ = 1,..., D, be the D, distinct
solutions of (3.1) such that q;_lyé‘ = N{(mod «). Then

1 | Da S b aua] if N20 and Dyl
My (e, quis N) = [ 0 otherwise . (3.2)
Moreover, for k = I, ..., Ds, the function [yf’ /q:,:] assumes just two values:

A
[y_:} - [_N_] or [L} _4 (3.3)
ai. d1au qiac
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and

N .
Dy [ ] + B if ¥>0 and DyN
g1t .

0 otherwise

Mi(e, g11; N) = (3.4)

where 0 < B £ Ds.

Proof. Remark that, obviously, Mi(-) = 0 if ¥ < 0 and/or D, does not divide N.
Otherwise, consider first the case Dg = 1, and let (31, y2) be the unique solution of (3.1)
such that g,1y2 = N{mod ). Since the most general solution is given by

01 y2) + (—kqu1, et} keZ . (3.5)

it follows that y; is the largest value which x; may assume if x; is required to be non-
negative. Moreover it is easily seen that

g - <n< ‘j;i- (3.6)
Hence by (3.5) all non-negative solutions of (3.1} have the form

Oy + (—kauke) 0k [;_11] : 3.7)
It follows immediately

M; (e, g1 N) = [q’]’—‘]] +1 (3.8)

and, by (3.6), the validity of the estimates

[N]_lg,:_yl_]g_[—lv]. 39)
&g, a1, &g1,1

If now Dy > 1, the same argument applies to any single one of the D, distinct solutions
(y{‘, yé’): h=1,..., Dy0f (3.1) such that q1'1y£‘ = N(mod o). This yields all non-negative
solutions of (3.1) under the form
k
[3’—‘:| : (.10)

g1,
Hence (3.9) holds for any & : 1 < & § D», which proves (3.3), and summing over 4 we get
(3.4). This concludes the proof of lemma 3.1.

O, Y2y + (—k(B)qy, 1, k(R)at) h=1,....Dy 0Kk <

Y/

Proof of proposition 2.1. The multiplicity of the eigenvalue A, ,. is the number of non-

negative solutions of the linear diophantine equation

.....

n—1

unx:’+l +xie=N. (3.11)

i=1 )
For n = 2,5 = 1, equation (3.11) reduces to (3.1) because the resonance relation can be
written under the form w; = (g1 /). Therefore we can take from now on n > 2. Given
n — 3 non-negative integers &; : j = 3,...,n we have to find the number of solutions of
the equations parametrized by &;: )

n
ax+qrix =N~ 3 kg - ki€Z; j=3,...,n. (3.12)
=3
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It is indeed plain that the nple (y1, y2; k3,..., %) is 2 non-negative solution of (3.11) if
and only if (31, ¥2) is a non-negative solution of (3.12). By lemma 3.1 the number of
non-negative solutions of (3.12) is

M) (Of, 6’1.1;N-'ijf-11.;-1)- (3.13)

j=3
Therefore one formally has

M7 (= 3 Y M (o: gri; N — ijqf,,_f) (3.14)
k€Ze  kacZy
However, by the former lemma the function M2 {(-) vanishes for N — Z;.'=3 kigy i1 < 0.

Hence, for any 3 < j < n, the upper limit of the sum over k; is [N/gy,;—1] which proves
the assertion. This concludes the proof of proposition 2.1.

Let us turn now to the proof of proposition 2.2. Let us first recall that if there is just
one resonance relation we have by definition —vy ; =¢;, j=1,...,n - 1; v, = and
we may write w, = (1/a) Zf____ll v, jw;. Moreover the ‘quanturm numbers’ defined in (1.8)
read

N; = pit + g1 Pa i=1,...,n—1 3.15)
so that the multiplicity M,}(oc, Gl1s -+ Gn-1,1; Ni, ..., Np—1) is given by the number of
non-negative integer solutions of the linear diophantine system

QX + ax = N
: : : (3.16)
Fn-11%n  + @y = Npop.

Proof of proposition 2.2. Recall that, choosing & > 0, there is at least one index i for which
gi,1 > 0. Otherwise

n—]

0<w,1—2 ) Z_:-é;—

Therefore in what follows we can assume (see remark (1) after proposition 2.2) the existence
of 0 £ r < n—2such that vy 1,...,Vr < 0} Vipg1seees Vg > 0. This implies,
in particular, that vy 4 is always taken positive. The case v;; = 0 for some (i, j) is
disregarded because it reduces to the single independent equation ax; = N; and therefore
does not affect the number of the solutions. The system (3.16) is equivalent to the following
system of linear congruences:

Xy = N
: (mod o) (3.17)
Gn-11%n = Npoy
which always admits at least the solution x, = p,. Let Dy = gcd{q[. -2 gu—-1.1, ). Then

the system (3.17) admits exactly D, distinct solutions, denoted y2 : £ = 1,..., D, (see
e.g. [Ca, section XVIL.337]). These yield D, distinct solutions of the system 3. 16) in turn
denoted by

S h=1,...,D, (3.18)
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whence the general solution of (3.16) under the form

CTTTIED 0 B o G % SR VU 7 MY 7)) h=1,....DnkeZ. (3.19)

Now take D, = 1, and therefore let y, be the unique solution of (3.17), which is obviously

such that 0 < y, < @. We now look for the conditions on £ in (3.19) coming from the

requirement of the non-negativity of the solutions.

W y+ka>0= %2> 0 (since y, < a).

(ii) y;—kg;1 2 Oforr+1 < { § n~1. Hence, since for these values of { we have g;| > 0,
the same argument of the proof of proposition 2.1 applies and we have k < L, where

L= min ([_y—D . (3.20)
r+lgign—I i1

Remark also that [y;/g;,1] fulfills, by the same argument of proposition 2.1, the estimate
3.9. -
(iii) Consider now the equations for which g;,; <0, j = 1...., r, namely —|g; ) |x, 4-cx; =
Nj;. Then the solutions are
s ) =+ (gjals ket . (3.21)
If N; = O then y; 2 0, which implies that the solution (3.21) is non-negative Vk > 0. If
Ny < 0, one must have —|g;,1|x, € N; which in turn yields x, 2 —N; /|q; (1. Therefore,

if the solution y, does not fulfill the lower bound y. > —N;/ig;.1], &£ has to be chosen
in such a way that

N.
Yo+ ko > ——1. (3.22)
gzl
We must therefore have
N.
Yn + ket > max (o, —L) : . (3.23)
jsr gj.t

Therefore, on account of (i), we can conclude that & > Afy, where

M; = max (0, (-1— (max (0, ﬂ) - y,,))) . (3.24)
o\ Jj€r gi,1

Putting together (ii) and (iii) it follows that in order ic get non-negative sclutions we
must require

Li<kg< M. (3.25)

If D, > | the same argument applies separately to any single one of the D, distinct

solutions (y;’, . yf:) th=1,...,D,. The assertion is therefore proved upon summation
over h =1, ..., D,. This concludes the proof of proposition 2.2.

We now proceed to the proof of proposition 2.3. To obtain it, we make use of a relatively
recent result in number theory which we state under the form of a lemma.

Lemma 3.2. . Let A€ M{(m x n) and B € M(m x 1) be matrices with integer coefficients,
and let rank(4) = r. If the equation Ax = 0 does not have non-trivial non-negative

solutions, then any non-negative integer solution y = (yy, ..., ¥,) of the equation Ax = B
fulfills the estimate
weM (3.26)

where M is the largest among the absolute values of the rank(r) minors of the matrix
obtained augmenting A by B, namely completing A by the column matrix B,
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Progf. See [BT, theorem 4].
As above, before starting the argument we recall that when there are s resonance relations
(1 <5 £ 1 —2) the ‘principal quantum numbers’ have the form

¥
N = piot+ > g1 Pnss i=1,...,n—s. (3.27)
i=1
The multiplicity M (c, g;;li=t,...n—s j=l st N1, - ., Nn—s) Of the eigenvalues is this time
given by the number of non-negative solution of the linear diophantine system
N gl Tt Q1sXn + wxp = Ny
Gn—s1Xn—s+1 +...+ Gn—ysXn + CXp—y = Nn.—.s' .

Proof of proposition 2.3. Following the same argument of the proof of proposition 2.1,
consider the linear diophantine systems

GiaXe—s+t + ax; = RF
: : : (3.29)
Dn—s1Xn—s+1 T QXpy = Rf—s
parametrized by the non-negative integers H = (fp—sqa, ..., By} € Z‘f;_‘l, where
g
R{":N,-—Z L I—r i=1,...,n—s. (3.30)

J=1

Each system of the form (3.29) can be analysed in exactly the same way as the system
(3.16). Recalling the definition of o and ¢;; we can indeed always choose vjp_gy; > 0
whence o = ]'I;:f:l Vjn—s+j > 0. Moreover, since v;,_.4; > 0, for each single resonance
relation, i.e. YI € j € 5, there must be i =i(f}: 1 < i < n—s5 such that v, > 0. This
in turn implies that V1 € j < s 3 = 1(j) such that g; ; > 0. In particular for j = 1 there
is { = i(1) such that g; ; > 0. Let us now write down explicitly the conditions under which
the systems (3.29) admit solutions (see e.g. [Ca section XVII. 334-6]). Let 5, ¢, ¢H be
the elementary divisors of the matrices

41,1 q1.1 Rf{

Gr—s,1 Yn-s,1 Rf—.s-

Then the systems (3.29) admits solutions if and only if
cd(e, e1) = gedle, €
gH( 1) = ged(er, €7) 331)
The existence of non-negative solutions requires, moreover,

RE>0 Vi suchthat g;; > 0. (3.32)
Therefore YH € Z7' the number of non-negative solutions of (3.29) is given by
M) (e gy, Gnessrs RE, .0, RIL) if (3.31) and (3.32) hold, and by O otherwise.

n
Therefore, by exactly the same argument as in the proof of proposition 2.2 we can write

Mo gi izt nmssj=toe sy N1 oo Nas)

= Z Mg, Guss RERE (3.3%)
H=(hper42,onnhin)eZl
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where MH_T 1 () is extended to 0 if (3.31), (3.32) do not hold. Now remark that the system
(3.28) fulfills the conditions of lemma 3.2. This is because the number of the non-negative
solutions of the associated homogeneous system js the multiplicity of the eigenvalue X
which is always simple. Therefore this last system cannot have non-negative solutions

different from the trivial one. Therefore all non-negative solutions (yi,..., y,) of (3.28)
must be such that
»w<K i=1,....n (3.34)

where K is the maximum among the absolute values of the # — s-rank minors of the matrix

e 0 ... 0 gt ... 9gig N

0 a 0 0 g1 ... g2 Ny

. . . . . (3.35)

;0 - : : :

0 ... 0 o gros1 ..o Gnoss Ny

We can therefore conclude that the multiple sum (3.33) is extended only to those indices
H=(hy_s12,....,hp) suchthat 0 < h; < K, f =n—s-+2,...,n, and this proves the
assertion.
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